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 This study explores the intricate relationships between air pollutants and meteorological 

parameters across five key locations in Malaysia—Seberang Perai, Shah Alam, Nilai, 

Larkin, and Pasir Gudang—over the period from 2017 to 2021. Utilizing trend analysis 

and Granger causality testing, the research found that in Seberang Perai, PM10 is Granger-

caused by NO₂ (p = 0.006) and CO (p = 0.004), indicating a strong causal relationship 

with 99% and 95% confidence levels, respectively. Temperature significantly influenced 

ozone levels (p = 0.047) with a 95% confidence level, and wind speed showed moderate 

effects on NO₂ (p = 0.086) with a 90% confidence level. In Shah Alam, relative humidity 

significantly Granger-caused NO₂ (p = 0.033) with a 95% confidence level. Urban 

environments demonstrate multifaceted dynamics involving multiple pollutants and 

meteorological factors. These insights are critical for air quality management and urban 

planning in Malaysia, offering a foundation for more targeted and effective strategies to 

mitigate air pollution. This research contributes to the broader objective of enhancing 

environmental quality in rapidly developing regions, aligning with global sustainability 

goals. 

 

 

1. INTRODUCTION 

 

The contemporary era grapples with a formidable 

challenge as the changing atmospheric conditions, driven 

by escalating air pollution, demand urgent attention. Key 

contributors to this issue include the rapid pace of 

urbanization, the influence of the industrial revolution, 

vehicular emissions, human activities, and population 

growth [1]. A study by Sentian [2] ranked Malaysia as 

third place in Southeast Asia for pollutant emissions, after 

Indonesia and Thailand. The expansion of the Malaysian 

economy has led to pollution in a variety of areas. Air 

pollution from industrial activity and automobiles, for 

instance, is currently on the rise. The concentrations of 

pollution in the atmosphere fluctuate due to weather 

conditions, pollutant sources, and topography. 

Nevertheless, meteorological conditions have the greatest 

influence on fluctuations in ambient air pollution 

concentrations among these three factors [3]. 

 

The phenomena associated with climate change are those 

that are either directly traceable to natural processes or 

indirectly attributable to anthropogenic compositional 

changes. A substantial relationship between climate 

change and air quality was established. Due to this 

occurrence, pollutants were prone to be more 

concentrated in the stratosphere, the lowest layer of the 

atmosphere, which eventually worsens the level of air 

quality [4]. Hence, it is necessary to determine the cause-

and-effect of PM10 that may contribute to a decline in air 

quality. In order to overcome these challenges, a study via 

statistical approach which selected significant parameters 

as its fundamental element of research was conducted to 

develop the air pollution model. If the strength of 

correlation is higher and the causality is significant, the 

Granger causality will provide some significant 

information related to cause-and-effect relationship 

between air pollutants and meteorological parameters [5]. 

 

However, with Granger causality, the idea is when the 

past and present parameters provide significant 

information to forecast the future, which is commonly 

used in time series analysis [6]. This study aims to 

determine cause-and-effect of PM10 using Granger 

Causality Test. Additionally, the research objectives 

include identifying types of causal relationships and 

enhance the understanding of air quality dynamics in 

Malaysia. This study aligns with environmental initiatives 

outlined in the Sustainable Malaysia 2030 agenda and 

contributes to broader goals of environmental 

sustainability in the country [7], [8]. 

 

Granger causality technique was often applied to a series 

data set to determine the interrelationship between 

variables which spans up to 150 years [9]. It's important 

to note that Granger causality does not imply true 

causation, and the observed relationships may be 

influenced by other factors. Additionally, the results 
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should be interpreted cautiously, considering the 

assumptions and limitations of the Granger causality test. 

In this context, the theoretical foundation of Granger 

causality is grounded in the concept of temporal 

precedence and the ability of past values of one variable 

to enhance the prediction of another variable's future 

values [10]. The approach has found applications not only 

in economics but also in various fields, including 

environmental studies, neuroscience, and social sciences. 

 

However, the application of Granger causality in 

predictive modelling is not without its challenges. One 

significant challenge is the potential for spurious 

correlations, where variables may appear to be causally 

linked due to shared influences or external factors [11]. 

Careful consideration and rigorous statistical testing are 

required to mitigate this risk and ensure the validity of the 

causal relationships identified. Another challenge lies in 

the assumption of linearity inherent in Granger causality 

testing, which may limit its applicability in cases where 

relationships between variables are nonlinear or involve 

complex interactions [12]. Moreover, Granger causality 

does not establish the direction of causality definitively 

and may only reflect statistical associations, necessitating 

a cautious interpretation of results. 

 

Moreover, a study by Chen [13] further discussed, the 

application of Granger causality extends beyond 

predictive modelling to inform policy planning and 

intervention strategies in air quality management. In this 

context, understanding the causal relationships between 

meteorological conditions and air pollution is pivotal for 

designing targeted measures that address specific 

contributing factors. Policymakers can use this 

information to formulate evidence-based strategies aimed 

at mitigating the impact of certain meteorological 

conditions on air quality. Additionally, Granger causality 

facilitates source identification, particularly in urban 

environments where distinguishing between natural and 

anthropogenic influences on air quality is challenging 

[10], [14]. This capability is crucial for effective pollution 

control measures, aiding in the development of policies 

that target specific sources of pollution and contribute to 

sustainable environmental management. 

 

The objective of this study is to determine the cause-and-

effect of air pollutants which is PM10 using the Granger 

causality tests. The data was obtained from the 

Department of Environment (DOE) and analysed using 

IBM SPSS Statistical Software Version 29 for descriptive 

statistics. The descriptive analysis of the air pollutants 

concentrations, which are PM10, SO2, NO2, O3, and CO, 

and the meteorological parameters, which are 

temperature, humidity, and wind speed, was performed at 

five selected locations of the air monitoring stations in 

Malaysia between 2017 and 2021. 

 

This research makes a significant contribution to the field 

of environmental science and air quality management by 

conducting a comprehensive analysis of air pollution 

trends in Malaysia over a five-year period. It offers 

valuable insights into the region's air quality dynamics. 

Utilizing Granger causality analysis, the study goes 

beyond simple correlations to uncover the complex cause-

and-effect relationships between air pollutants and 

weather conditions. This research aligns with the United 

Nations' Sustainable Development Goal 11, which aims 

to minimize the environmental impact of cities by 

improving air quality [15], [16]. The findings provide a 

robust basis for developing evidence-based policies and 

health interventions, enhancing the accuracy of air quality 

forecasts, and enabling prompt actions to safeguard public 

health and improve environmental quality in Malaysia 

[17]. 

 

 

2. EXPERIMENTAL PROCEDURE 

 

2.1 Materials 

 

This study adopts a data-driven approach to examine the 

relationships between air pollutants and weather 

conditions in Malaysia from 2017 to 2021, structured into 

three key phases. The first phase involves collecting and 

preprocessing data from five selected areas that represent 

the northern, central, and southern regions of the country. 

The second phase focuses on analyzing the temporal 

trends and stationarity of the data. In the third phase, 

Granger causality tests are employed to explore the cause-

and-effect dynamics between pollutants and 

meteorological factors. 

 

2.2 Methods 

 

The research begins with a descriptive analysis and trend 

analysis of air pollutant concentrations and 

meteorological parameters, where box plots and time 

series graphs were created to visualize the data. Following 

this, the study moves to the second phase, where Granger 

causality analysis is used to identify the relationships 

between air pollutants and meteorological parameters 

[18]. The causal relationships uncovered are then 

presented through graphical visualizations, providing a 

clear depiction of how meteorological factors influence 

air pollution levels across different regions of Malaysia. 

 

2.3 Site Description 

 

This research focuses on five strategically chosen 

monitoring stations in Malaysia—Perai, Shah Alam, 

Nilai, Larkin, and Pasir Gudang as shown in Figure 1. The 

research area covered the northern, central and southern 

region. The details and coordinates of the stations are 

summarized in Table 1. 
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Figure 1. Location of research area. 

 

 
Table 1 Latitude and Longitude for five monitoring station’s location 

 

Station ID State Location Coordinate 

CA07P 
Seberang Perai, Pulang 

Pinang 

Sek. Keb. Cenderawasih, Taman 

Inderawasih, Perai 

N05° 23.470’ 

E100° 23.213’ 

CA20B Shah Alam, Selangor 
Sek. Keb. Taman Tun Dr. Ismail Jaya, 

Shah Alam 

N03° 06.287’ 

E101° 33.368’ 

CA23N Nilai, Negeri Sembilan Taman Semarak (Phase II), Nilai 
N02° 49.246’ 

E101° 48.877’ 

CA33J Larkin, Johor 
Teacher Education Temenggong Ibrahim 

Campus, Larkin, Johor Bahru 

N01° 29.815’ 

E103° 43.617’ 

CA34J Pasir Gudang, Johor 
Sek. Men. Keb. Pasir Gudang 2, Pasir 

Gudang, Johor Bahru 

N01° 28.225’ 

E103° 53.637’ 

2.4 Data Collection and Preliminary Data Processing 

 

The study utilized secondary data from the Department of 

Environment Malaysia, covering the period from 2017 to 

2021. Data was collected from five air quality monitoring 

stations, representing urban, suburban, and industrial 

areas, to analyze five key air pollutants: PM10, SO2, 

NO2, O3, and CO. Additionally, three meteorological 

parameters – wind speed, temperature, and relative 

humidity – were included in the analysis. 

 

To achieve the study's objectives, monthly data on these 

air pollutants and meteorological factors was gathered and 

analyzed. Descriptive analysis was conducted using SPSS 

software, which computed essential statistical metrics 

such as minimum, maximum, mean, standard deviation, 

skewness, and kurtosis for each parameter at each station 

[18]. This provided a comprehensive understanding of the 

data's characteristics and potential trends, laying the 

groundwork for further analysis. 
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2.5 Time Series & Descriptive Analysis 

 

Following data collection, the acquired datasets 

underwent both descriptive and time series analyses to 

comprehensively understand their characteristics and 

temporal dynamics. Descriptive analysis, facilitated by 

SPSS software, provided key statistical metrics such as 

minimum and maximum values, mean, standard 

deviation, skewness, and kurtosis, offering an in-depth 

understanding of the data from each monitoring station 

[12]. Subsequently, time series analysis was conducted to 

examine the stationarity of the data using the Augmented 

Dickey-Fuller (ADF) test in EViews software.  

 

𝑦𝑡 = 𝑐 + 𝛽𝑡 + 𝛼𝑌𝑡−1 + ∅∆𝑌𝑡−1 + ∅2∆𝑌𝑡−2. . +∅𝑝∆𝑌𝑡−𝑝         

(Eq 1) 

 

The ADF test, applied to the level form of each series 

including trend and intercept, was crucial in identifying 

non-stationarity when p-values exceeded 0.05. In such 

cases, data differencing was performed to achieve 

stationarity, ensuring the reliability of further temporal 

analysis [19]. Together, these analytical steps provided a 

robust foundation for understanding the data and 

preparing it for advanced modelling. 

 

2.6 Granger Causality Analysis 

 

The analysis is grounded in the theoretical framework of 

autoregressive models, which explore how a variable’s 

current value is influenced by its past values. In the 

context of Granger causality, these models are used to 

determine whether the past values of one variable (X) 

significantly improve the prediction of another variable 

(Y), beyond what Y’s own history can predict. While 

Granger causality doesn’t imply true causation, it serves 

as a powerful statistical tool for identifying predictive 

relationships in time series data [10], [20]. The test 

involves comparing models that include and exclude the 

past values of X to evaluate whether adding X enhances 

the prediction of Y. This approach is crucial in time series 

analysis, where understanding the temporal relationships 

and directional influences between variables is essential 

for accurate forecasting [9]. 

 

𝑦𝑖 = 𝛼0 + ∑ 𝛼𝑗𝑦𝑖−𝑗  
𝑚

𝑗=1
+ ∑ 𝛽𝑗𝑥𝑖−𝑗  

𝑚

𝑗=1
+ 𝜀𝑖         (Eq 2) 

 

In the final phase of the study, Granger causality tests 

were applied to examine the causal relationships between 

air pollutants and meteorological parameters. Before 

conducting these tests, the optimal lag length for the 

analysis was determined using the Akaike Information 

Criterion (AIC) in EViews software, ensuring a balance 

between model complexity and goodness of fit. With the 

selected lag order, an unrestricted Vector Autoregression 

(VAR) model was estimated. The Granger causality tests 

were then used to assess whether the past values of one 

variable provided predictive information about another. A 

p-value of 0.05 or lower led to the rejection of the null 

hypothesis of no Granger causality, indicating a 

significant causal relationship [12]. The results were 

visualized to illustrate the direction and strength of these 

causal connections across different monitoring stations. 

 

 

3. RESULTS AND DISCUSSION 

 

3.1 Descriptive Analysis 

 

A comprehensive analysis of air pollutants and 

meteorological parameters across five key Malaysian 

locations—Seberang Perai, Shah Alam, Nilai, Larkin, and 

Pasir Gudang—reveals distinct patterns and variations 

that underscore the complex interplay between 

urbanization, industrial activity, and environmental 

conditions. Urban areas, particularly Shah Alam and 

Larkin, consistently exhibit higher mean concentrations 

of air pollutants such as PM₁₀, SO₂, NO₂, and O₃, 

reflecting the significant air quality challenges posed by 

heavy traffic and industrial emissions. In contrast, Pasir 

Gudang and Larkin recorded some of the lowest 

minimum concentrations for pollutants like PM₁₀ and 

SO₂, suggesting variability in exposure to pollution 

sources even within urban and industrial settings. 

Notably, Larkin also experiences the highest ambient 

temperatures, indicative of the urban heat island effect, 

while Pasir Gudang demonstrates better air quality 

overall, potentially due to effective local environmental 

management [21]. 

 
Table 2 The descriptive analysis of the concentrations from 2017 to 2021 

 

Station Seberang Perai Shah Alam Nilai Larkin Pasir Gudang 

PM10 

N 54 54 54 54 54 

Minimum, µg/m3 16.185 20.991 20.905 17.579 15.502 

Maximum, µg/m3 43.696 89.365 102.887 72.508 63.236 

Mean, µg/m3 25.387 32.667 34.234 28.194 26.039 

Standard Deviation, µg/m3 6.758 10.138 12.615 8.336 8.497 

Coefficient of variation 0.266 0.310 0.368 0.296 0.326 

Skewness 1.153 3.570 3.379 3.005 1.787 

Kurtosis 1.089 18.262 16.227 14.350 5.600 
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SO2 

N 54 54 54 54 54 

Minimum, ppm 0.001 0.001 0.001 0.001 0.001 

Maximum, ppm 0.002 0.002 0.004 0.003 0.010 

Mean, ppm 0.001 0.001 0.001 0.002 0.002 

Standard Deviation, ppm 0.0003 0.0002 0.0005 0.0005 0.0013 

Coefficient of variation 0.3 0.2 0.5 0.25 0.65 

Skewness 0.473 0.187 4.234 0.063 4.269 

Kurtosis -0.757 0.746 23.370 0.223 23.504 

NO2 

N 54 54 54 54 54 

Minimum, ppm 0.005 0.007 0.006 0.004 0.004 

Maximum, ppm 0.015 0.022 0.018 0.018 0.018 

Mean, ppm 0.009 0.016 0.013 0.012 0.011 

Standard Deviation, ppm 0.002 0.003 0.003 0.003 0.004 

Coefficient of variation 0.22 0.19 0.23 0.25 0.36 

Skewness 0.483 -0.408 0.040 0.036 -0.495 

Kurtosis 1.314 0.290 -0.845 -0.788 -0.863 

O3 

N 54 54 54 54 54 

Minimum, ppm 0.004 0.014 0.005 0.009 0.008 

Maximum, ppm 0.031 0.038 0.024 0.026 0.025 

Mean, ppm 0.016 0.020 0.010 0.015 0.014 

Standard Deviation, ppm 0.007 0.005 0.004 0.004 0.004 

Coefficient of variation 0.44 0.25 0.4 0.27 0.29 

Skewness 0.075 1.306 1.451 0.667 0.517 

Kurtosis -0.734 1.860 2.074 0.863 -0.032 

CO 

N 54 54 54 54 54 

Minimum, ppm 0.473 0.531 0.372 0.188 0.410 

Maximum, ppm 1.023 1.263 1.184 0.975 0.905 

Mean, ppm 0.715 0.829 0.594 0.601 0.657 

Standard Deviation, ppm 0.101 0.150 0.127 0.218 0.122 

Coefficient of variation 0.14 0.18 0.21 0.36 0.19 

Skewness 0.348 0.240 1.888 -0.152 0.080 

Kurtosis 0.678 -0.158 7.703 -1.313 -0.871 

The descriptive statistics for these locations from 2017 to 

2021 further illustrate in the Table 2 is the impact of 

broader environmental factors on air quality. For instance, 

the 2020 Movement Control Order (MCO) led to a 

significant decrease in NO₂ levels across urban areas like 

Shah Alam, as reduced transportation and industrial 

activities resulted in lower emissions [22], [23]. However, 

the data also highlight the vulnerability of these areas to 

extreme pollution events, such as the spikes in PM₁₀ and 

SO₂ concentrations observed in October 2019, largely 

driven by seasonal weather changes and industrial 

activities. These findings emphasize the importance of 

continuous monitoring and targeted interventions to 

manage air pollution, particularly in industrial and urban 

areas [24]. The variability in pollutant concentrations 

across different locations and time periods underscores 

the need for localized strategies to address specific 

pollution sources and mitigate the impact of extreme 

events on the environment. 
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3.2 Trend Analysis 

 

From 2017 to 2021, air quality in Malaysia generally 

remained within acceptable limits, with occasional 

fluctuations influenced by both seasonal variations and 

human activities. Particulate matter (PM₁₀) levels were 

predominantly in the "Good" to "Moderate" range, except 

during the 2019 haze episode, which saw a significant 

spike in concentrations. This event highlighted the 

vulnerability of the region to transboundary pollution. 

Conversely, the Movement Control Order (MCO) 

implemented in 2020 due to the COVID-19 pandemic led 

to a notable decrease in PM₁₀ levels, underscoring the 

impact of reduced industrial activities and vehicular 

emissions on air quality. Sulfur dioxide (SO₂), nitrogen 

dioxide (NO₂), and carbon monoxide (CO) concentrations 

remained consistently low throughout this period, well 

below the Malaysian Ambient Air Quality Guidelines 

(MAAQG) limits [25]. These findings reflect the 

effectiveness of ongoing regulatory measures and 

industrial controls in managing these pollutants. 

However, ozone (O₃) levels, while still within permissible 

limits, emerged as a pollutant of concern, particularly 

during periods of high solar radiation, which is known to 

catalyze ozone formation [9]. 

 

 

Meteorological parameters exhibited distinct seasonal 

patterns shown in Table 3. Wind speeds increased 

significantly during monsoonal periods, especially at 

coastal monitoring stations, contributing to the dispersion 

of pollutants. Relative humidity consistently remained 

high, ranging between 80-90%, with slight decreases 

during the Northeast Monsoon, possibly due to drier air 

masses. Ambient temperatures followed a predictable 

seasonal cycle, with higher temperatures observed during 

the Southwest Monsoon and cooler temperatures during 

the Northeast Monsoon [26]. The 2020 MCO period 

provided a unique case study, where significant 

improvements in air quality were observed across all 

monitored pollutants. This period of reduced human 

activity, including limited industrial operations and 

transportation, offered a glimpse into the potential for 

sustained air quality improvements with concerted efforts 

in pollution control [4]. 

These findings underscore the need for continuous 

monitoring and adaptive policy-making to address the 

dynamic nature of air quality in Malaysia, particularly in 

the context of seasonal changes and episodic events such 

as haze. Future strategies should focus on maintaining low 

levels of key pollutants while addressing emerging 

concerns like ozone, ensuring that air quality remains 

within safe limits for public health and the environment 

[21]. 

 

 
Table 3 The time series trend analysis of the concentrations from 2017 to 2021 

 

Concentration Time Series Trend Analysis 

PM10 

 

SO2 
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NO2 

 

O3 

 

CO 

 

Temperature 

 

Humidity 

 

Wind Speed 

 

3.3 Granger Causality Analysis 

 

Granger causality occurs when the past and present values 

of a specific characteristic provide valuable information 

for predicting its future behavior in a time series. To 

explore the causal relationships among the parameters 

PM10, SO2, NO2, CO and O3, a Granger causality test was 

conducted. The results of these tests for each monitoring 

station are presented in Tables 4-8. 

 

 

 

 

 



FKTA POSTGRADUATE COLLOQUIUM 2024 

 

104 

 

Table 4 Granger causality for Seberang Perai monitoring station 

 

Monitoring Station: Seberang Perai, Pulau Pinang 

Dependent Parameter: PM10 

Independent Parameter Chi-Sq p-value 

SO2 0.27548 0.600 

NO2 7.46433 0.006* 

O3 0.05908 0.808 

CO 8.33552 0.004* 

Temperature 0.06056 0.806 

Wind Speed 0.37567 0.540 

Humidity 0.04410 0.834 

Dependent Parameter: SO2 

PM10 0.70308 0.402 

NO2 0.75367 0.385 

O3 0.58565 0.444 

CO 0.81203 0.368 

Temperature 0.09796 0.754 

Wind Speed 0.38388 0.536 

Humidity 0.20211 0.653 

Dependent Parameter: NO2 

PM10 0.56086 0.454 

SO2 8.32492 0.004* 

O3 0.38846 0.533 

CO 0.07306 0.787 

Temperature 0.19442 0.659 

Wind Speed 0.86435 0.353 

Humidity 0.00803 0.929 

Dependent Parameter: O3 

PM10 10.3228 0.001* 

SO2 1.17158 0.279 

NO2 10.6869 0.001* 

CO 2.83435 0.092** 

Temperature 3.94086 0.047* 

Wind Speed 2.7845 0.095** 

Humidity 0.17181 0.679 

Dependent Parameter: CO 

PM10 0.43881 0.508 

SO2 1.23403 0.267 

NO2 2.38014 0.123*** 

O3 0.63427 0.426 

Temperature 0.7021 0.402 

Wind Speed 5.13726 0.023* 

Humidity 0.36855 0.544 

Dependent Parameter: Temperature 

PM10 0.3439 0.558 
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SO2 0.70477 0.401 

NO2 1.91067 0.167 

O3 2.02246 0.155 

CO 0.82515 0.364 

Wind Speed 0.53066 0.466 

Humidity 0.46584 0.495 

Dependent Parameter: Wind Speed 

PM10 1.52507 0.217 

SO2 0.36673 0.545 

NO2 2.94965 0.086** 

O3 4.26101 0.039* 

CO 2.70516 0.100** 

Temperature 2.59238 0.107*** 

Humidity 3.08547 0.079** 

Dependent Parameter: Humidity 

PM10 6.05225 0.014* 

SO2 0.45877 0.498 

NO2 7.67461 0.006* 

O3 1.37195 0.242 

CO 2.55233 0.110*** 

Temperature 10.4196 0.001* 

Wind Speed 0.11611 0.733 

* Indicates significant at 5% level 

** Indicates significant at 10% level 

*** Indicates significant at 15% level 

 

Table 5 Granger causality for Shah Alam monitoring station 

 

Monitoring Station: Shah Alam, Selangor 

Dependent Parameter: PM10 

Independent Parameter Chi-Sq p-value 

SO2 0.265915 0.6061 

NO2 0.36214 0.5473 

O3 0.7682 0.3808 

CO 0.13059 0.7178 

Temperature 0.8573 0.3545 

Wind Speed 0.25011 0.617 

Humidity 1.30993 0.2524 

Dependent Parameter: SO2 

PM10 0.93613 0.3333 

NO2 0.47725 0.4897 

O3 6.49885 0.0108* 

CO 0.81203 0.368 

Temperature 0.09796 0.754 

Wind Speed 0.04149 0.8386 

Humidity 5.25909 0.0218* 
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Dependent Parameter: NO2 

PM10 0.04903 0.8248 

SO2 1.14396 0.2848 

O3 2.16246 0.1414*** 

CO 0.00000 0.9988 

Temperature 4.16959 0.0412* 

Wind Speed 1.48254 0.2234 

Humidity 3.42587 0.0642** 

Dependent Parameter: O3 

PM10 0.03081 0.8607 

SO2 4.11517 0.0425* 

NO2 2.45781 0.1169*** 

CO 0.03068 0.861 

Temperature 9.75627 0.0018* 

Wind Speed 8.92796 0.0028* 

Humidity 1.50687 0.2196 

Dependent Parameter: CO 

PM10 0.25866 0.611 

SO2 0.00017 0.9897 

NO2 4.00726 0.0453* 

O3 1.25323 0.2629 

Temperature 1.76683 0.1838 

Wind Speed 1.75085 0.1858 

Humidity 1.55784 0.212 

Dependent Parameter: Temperature 

PM10 2.61517 0.1058*** 

SO2 0.38199 0.5365 

NO2 0.05352 0.8170 

O3 0.06365 0.8008 

CO 0.55323 0.4570 

Wind Speed 0.79587 0.3723 

Humidity 0.44362 0.5054 

Dependent Parameter: Wind Speed 

PM10 0.50807 0.4760 

SO2 1.94103 0.1636 

NO2 2.49409 0.1143*** 

O3 1.43348 0.2312 

CO 0.84585 0.3577 

Temperature 0.61697 0.4322 

Humidity 3.63526 0.0566** 

Dependent Parameter: Humidity 

PM10 4.54342 0.033* 

SO2 0.75312 0.3855 

NO2 0.38076 0.5372 

O3 0.3154 0.5744 

CO 2.58462 0.1079*** 
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Temperature 0.78545 0.3755 

Wind Speed 4.02767 0.0448* 

* Indicates significant at 5% level 

** Indicates significant at 10% level 

*** Indicates significant at 15% level 

 

Table 6 Granger causality for Nilai monitoring station 

 

Monitoring Station: Nilai, Seremban 

Dependent Parameter: PM10 

Independent Parameter Chi-Sq p-value 

SO2 17.3825 0.0000* 

NO2 2.65213 0.1034 

O3 0.12296 0.7258 

CO 0.08302 0.7732 

Temperature 0.93289 0.3341 

Wind Speed 0.02122 0.8842 

Humidity 0.02725 0.8689 

Dependent Parameter: SO2 

PM10 0.29853 0.5848 

NO2 0.00926 0.9233 

O3 1.05435 0.3045 

CO 0.10762 0.7429 

Temperature 0.0836 0.7725 

Wind Speed 0.10636 0.7443 

Humidity 0.22171 0.6377 

Dependent Parameter: NO2 

PM10 0.05751 0.8105 

SO2 0.3871 0.5338 

O3 4.31398 0.0378* 

CO 1.27003 0.2598 

Temperature 3.97136 0.0463* 

Wind Speed 2.50175 0.1137*** 

Humidity 2.17022 0.1407*** 

Dependent Parameter: O3 

PM10 0.85759 0.3544 

SO2 0.65904 0.4169 

NO2 0.19946 0.6552 

CO 0.46569 0.495 

Temperature 6.39771 0.0114* 

Wind Speed 0.05283 0.8182 

Humidity 1.21675 0.27 

Dependent Parameter: CO 

PM10 10.1566 0.0014* 

SO2 4.14503 0.0418* 

NO2 0.43911 0.5076 
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O3 0.032 0.858 

Temperature 1.28169 0.2576 

Wind Speed 0.18107 0.6705 

Humidity 0.21399 0.6437 

Dependent Parameter: Temperature 

PM10 1.07442 0.2999 

SO2 0.5214 0.4702 

NO2 5.10253 0.0239* 

O3 0.72542 0.3944 

CO 0.12099 0.728 

Wind Speed 1.57351 0.2097 

Humidity 5.49687 0.0191* 

Dependent Parameter: Wind Speed 

PM10 0.20797 0.6484 

SO2 0.15761 0.6914 

NO2 2.15878 0.1418*** 

O3 10.4632 0.0012* 

CO 1.3272 0.2493 

Temperature 20.0355 0.0000* 

Humidity 2.18803 0.1391*** 

Dependent Parameter: Humidity 

PM10 5.04776 0.0247* 

SO2 1.09402 0.2956 

NO2 0.71872 0.3966 

O3 5.41697 0.0199* 

CO 0.1454 0.703 

Temperature 11.116 0.0009* 

Wind Speed 0.00193 0.9649 

* Indicates significant at 5% level 

** Indicates significant at 10% level 

*** Indicates significant at 15% level 

 

 
Table 7 Granger causality for Pasir Gudang monitoring station 

 

Monitoring Station: Pasir Gudang, Johor 

Dependent Parameter: PM10 

Independent Parameter Chi-Sq p-value 

SO2 0.34408 0.8419 

NO2 2.40257 0.3008 

O3 2.12515 0.3456 

CO 3.14377 0.2077 

Temperature 1.35877 0.5069 

Wind Speed 1.07842 0.5832 

Humidity 0.1096 0.9467 

Dependent Parameter: SO2 

PM10 4.82275 0.0897** 
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NO2 3.21985 0.1999 

O3 2.2273 0.3284 

CO 8.51814 0.0141* 

Temperature 7.58611 0.0225* 

Wind Speed 2.68239 0.2615 

Humidity 2.6471 0.2662 

Dependent Parameter: NO2 

PM10 5.08789 0.0786** 

SO2 1.80519 0.4055 

O3 0.89026 0.6407 

CO 5.32211 0.0699** 

Temperature 7.71731 0.0211* 

Wind Speed 1.05749 0.5893 

Humidity 1.11196 0.5735 

Dependent Parameter: O3 

PM10 3.673 0.1594 

SO2 0.16266 0.9219 

NO2 2.52949 0.2823 

CO 7.76301 0.0206* 

Temperature 1.7852 0.4096 

Wind Speed 6.05544 0.0484* 

Humidity 4.19207 0.1229*** 

Dependent Parameter: CO 

PM10 1.24136 0.5376 

SO2 4.16605 0.1246*** 

NO2 7.35129 0.0253* 

O3 7.07622 0.0291* 

Temperature 3.32216 0.1899 

Wind Speed 0.89244 0.64 

Humidity 11.565 0.0031* 

Dependent Parameter: Temperature 

PM10 0.04821 0.9762 

SO2 1.36199 0.5061 

NO2 2.0086 0.3663 

O3 0.62318 0.7323 

CO 0.11285 0.9451 

Wind Speed 1.61012 0.4471 

Humidity 3.0286 0.22 

Dependent Parameter: Wind Speed 

PM10 2.71378 0.2575 

SO2 7.91984 0.0191* 

NO2 9.66931 0.0079* 

O3 6.00789 0.0496* 

CO 9.16854 0.0102* 

Temperature 2.61201 0.2709 

Humidity 3.11237 0.2109 



FKTA POSTGRADUATE COLLOQUIUM 2024 

 

110 

 

Dependent Parameter: Humidity 

PM10 0.70876 0.7016 

SO2 0.45195 0.7977 

NO2 4.39832 0.1109*** 

O3 8.44162 0.0147* 

CO 0.85217 0.6531 

Temperature 5.29491 0.0708** 

Wind Speed 7.87386 0.0195* 

* Indicates significant at 5% level 

** Indicates significant at 10% level 

*** Indicates significant at 15% level 

 
Table 8 Granger causality for Larkin monitoring station 

 

Monitoring Station: Larkin, Johor 

Dependent Parameter: PM10 

Independent Parameter Chi-Sq p-value 

SO2 0.15787 0.9241 

NO2 7.40993 0.0246* 

O3 0.48319 0.7854 

CO 6.85545 0.0325* 

Temperature 2.72915 0.2555 

Wind Speed 0.59571 0.7424 

Humidity 10.1513 0.0062* 

Dependent Parameter: SO2 

PM10 1.19689 0.5497 

NO2 0.14098 0.9319 

O3 3.53898 0.1704 

CO 0.00484 0.9976 

Temperature 2.69656 0.2597 

Wind Speed 1.16637 0.5581 

Humidity 4.1847 0.1234*** 

Dependent Parameter: NO2 

PM10 1.98644 0.3704 

SO2 1.21659 0.5443 

O3 2.98602 0.2247 

CO 0.754 0.6859 

Temperature 2.04233 0.3602 

Wind Speed 0.63395 0.7283 

Humidity 4.27402 0.118*** 

Dependent Parameter: O3 

PM10 8.04246 0.0179* 

SO2 1.1476 0.5634 

NO2 12.4574 0.002* 

CO 8.15554 0.0169* 

Temperature 5.91208 0.052* 
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Wind Speed 5.00742 0.0818** 

Humidity 19.7155 0.0001* 

Dependent Parameter: CO 

PM10 1.07 0.5857 

SO2 2.29789 0.317 

NO2 9.19884 0.0101* 

O3 2.32634 0.3125 

Temperature 5.03124 0.0808** 

Wind Speed 6.26311 0.0436* 

Humidity 4.05392 0.1317*** 

Dependent Parameter: Temperature 

PM10 1.05693 0.5895 

SO2 0.9288 0.6285 

NO2 1.1508 0.5625 

O3 4.49174 0.1058*** 

CO 2.06483 0.3561 

Wind Speed 0.69235 0.7074 

Humidity 9.18115 0.0101* 

Dependent Parameter: Wind Speed 

PM10 1.38829 0.4995 

SO2 0.65156 0.722 

NO2 7.33653 0.0255* 

O3 1.96176 0.375 

CO 13.0422 0.0015* 

Temperature 10.9037 0.0043* 

Humidity 3.37888 0.1846 

Dependent Parameter: Humidity 

PM10 2.30743 0.3155 

SO2 0.08511 0.9583 

NO2 2.62454 0.2692 

O3 5.72441 0.0571** 

CO 8.91539 0.0116* 

Temperature 8.99964 0.0111* 

Wind Speed 0.84879 0.6542 

* Indicates significant at 5% level 

** Indicates significant at 10% level 

*** Indicates significant at 15% level 
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Table 9 The result Granger Causality Diagram for all the monitoring stations 

 

Monitoring Stations Granger Causality Diagram 

Seberang Perai, Pulau 

Pinang 

 

Shah Alam, Selangor 

 

Nilai, Seremban 

 

Pasir Gudang, Johor 

 

Larkin, Johor 

 

*Black lines indicate causality relationships with p-values less than 0.05 

*Red lines represent relationships with p-values between 0.05 and 0.10 

*Blue lines indicate causality relationships with p-value more than 0.10 

In sub-urban and urban areas, meteorological factors 

significantly influenced pollutant levels, revealing 

distinct interaction patterns across various locations. In 

Seberang Perai, ambient temperature exhibited a strong 

relationship with ozone (O₃), while SO₂ and NO₂ showed 

moderate correlations with temperature. Shah Alam 

demonstrated that relative humidity Granger-caused NO₂ 

and moderately influenced O₃, while temperature was a 

moderate cause of NO₂ levels [27]. These findings align 

with Table 9, existing research that underscores the 

crucial role of temperature and humidity in shaping air 

quality dynamics, particularly in ozone formation and 

nitrogen dioxide concentrations [28]. 

 

In industrial and urban areas, more complex pollutant 

interactions were observed. Nilai displayed a bidirectional 

causality between SO₂ and PM₁₀, with wind speed also 

playing a significant role in SO₂ levels. Larkin, an urban 

center, showed that NO₂ and CO Granger-caused PM₁₀, 

while relative humidity influenced both PM₁₀ and O₃ 
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concentrations. Pasir Gudang revealed diverse 

interactions, where O₃ influenced SO₂, wind speed 

affected SO₂, and PM₁₀ had an impact on NO₂, O₃, and CO 

levels [2]. These findings highlight the intricate dynamics 

of air pollution in urban and industrial settings, 

emphasizing the importance of understanding the 

multifaceted relationships between pollutants and 

meteorological factors for effective air quality 

management. 

 

 

4. CONCLUSION 

 

This study provides critical insights into the relationships 

between air pollutants and meteorological parameters 

across various regions in Malaysia. Descriptive analysis 

reveals that urban areas, such as Shah Alam and Larkin, 

consistently exhibit higher pollutant concentrations, 

particularly PM₁₀ and NO₂, due to industrial activities and 

traffic emissions. In contrast, Pasir Gudang recorded 

lower levels of PM₁₀ and SO₂, reflecting effective local 

management. The trend analysis from 2017 to 2021 

highlights key events such as the 2019 haze, which caused 

significant PM₁₀ spikes, and the 2020 Movement Control 

Order (MCO), which led to a noticeable reduction in NO₂ 

and PM₁₀ due to decreased industrial and vehicular 

activities. 

 

The Granger causality analysis uncovers significant 

cause-and-effect relationships, particularly in Seberang 

Perai, where NO₂ (p = 0.006) and CO (p = 0.004) 

significantly influence PM₁₀, and ozone (O₃) is affected 

by temperature (p = 0.047). In Shah Alam, relative 

humidity (p = 0.033) significantly impacts NO₂ levels. 

These findings highlight the pivotal role of 

meteorological factors in influencing air quality 

dynamics. The study underscores the importance of 

targeted interventions based on regional characteristics to 

mitigate air pollution, supporting broader goals of 

environmental sustainability and public health protection 

in Malaysia. 
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